Advertisements
Advertisements
प्रश्न
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
बेरीज
उत्तर
`int_0^1 x"e"^(x^2) "d"x = 1/2 int_0^1 2x"e"^(x^2) "d"x`
Let t = x2
Then dt = 2x dx
When x = 0, t = 0
x = 1, t = 1
So the integral becomes,
`1/2int_0^2 "e"^"t" "dt" = 1/2 ["e"^"t"]_0^1`
= `1/2 ["e" - 1]`
shaalaa.com
Definite Integrals
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]
\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]
\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]
\[\int\limits_a^b \cos\ x\ dx\]
\[\int\limits_{- 1}^1 x\left| x \right| dx .\]
Evaluate each of the following integral:
\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`