Advertisements
Advertisements
प्रश्न
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
योग
उत्तर
`int_0^1 x"e"^(x^2) "d"x = 1/2 int_0^1 2x"e"^(x^2) "d"x`
Let t = x2
Then dt = 2x dx
When x = 0, t = 0
x = 1, t = 1
So the integral becomes,
`1/2int_0^2 "e"^"t" "dt" = 1/2 ["e"^"t"]_0^1`
= `1/2 ["e" - 1]`
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]
Prove that:
\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]
\[\int\limits_0^2 e^x dx\]
\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`