Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
उत्तर
\[\text{We have}, \]
\[I = \int\limits_0^1 \left\{ x \right\} dx\]
\[\text{We know} \left\{ x \right\} = x, 0 < x < 1\]
\[ \therefore I = \int\limits_0^1 x\ dx\]
\[ = \left[ \frac{x^2}{2} \right]_0^1 \]
\[ = \frac{1}{2} - \frac{0}{2}\]
\[ = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f is an integrable function, show that
Evaluate each of the following integral:
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`