Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
उत्तर
We have,
\[I = \int_0^1 x \left( \tan^{- 1} x \right)^2 d x\]
\[\text{Putting }\tan^{- 1} x = u\]
\[ \Rightarrow x = \tan u\]
\[ \Rightarrow dx = \sec^2 u du\]
\[\text{When }x \to 0; u \to 0\]
\[\text{and }x \to 1; u \to \frac{\pi}{4}\]
\[ \therefore I = \int_0^\frac{\pi}{4} \left( \tan u \right) u^2 \sec^2 u\ du\]
\[ = \int_0^\frac{\pi}{4} u^2 \tan u \sec^2 u\ du\]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} 2u \frac{\tan^2 u}{2} du\]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} u \left( \sec^2 u - 1 \right) du\]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} u \sec^2 u\ du + \int_0^\frac{\pi}{4} u\ du\]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \left[ u \tan u \right]_0^\frac{\pi}{4} + \int_0^\frac{\pi}{4} \tan u\ du + \left[ \frac{u^2}{2} \right]_0^\frac{\pi}{4} \]
\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \left[ u \tan u \right]_0^\frac{\pi}{4} + \left[ \log \left| \sec u \right| \right]_0^\frac{\pi}{4} + \left[ \frac{u^2}{2} \right]_0^\frac{\pi}{4} \]
\[ = \frac{\pi^2}{16} \times \frac{1}{2} - \frac{\pi}{4} + \log\sqrt{2} + \frac{\pi^2}{32}\]
\[ = \frac{\pi^2}{16} - \frac{\pi}{4} + \log\sqrt{2}\]
\[ = \frac{\pi^2}{16} - \frac{\pi}{4} + \frac{1}{2}\log 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Solve each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following:
Γ(4)
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is