हिंदी

1 ∫ 0 X ( Tan − 1 X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]

योग

उत्तर

We have,

\[I = \int_0^1 x \left( \tan^{- 1} x \right)^2 d x\]

\[\text{Putting }\tan^{- 1} x = u\]

\[ \Rightarrow x = \tan u\]

\[ \Rightarrow dx = \sec^2 u du\]

\[\text{When }x \to 0; u \to 0\]

\[\text{and }x \to 1; u \to \frac{\pi}{4}\]

\[ \therefore I = \int_0^\frac{\pi}{4} \left( \tan u \right) u^2 \sec^2 u\ du\]

\[ = \int_0^\frac{\pi}{4} u^2 \tan u \sec^2 u\ du\]

\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} 2u \frac{\tan^2 u}{2} du\]

\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} u \left( \sec^2 u - 1 \right) du\]

\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} u \sec^2 u\ du + \int_0^\frac{\pi}{4} u\ du\]

\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \left[ u \tan u \right]_0^\frac{\pi}{4} + \int_0^\frac{\pi}{4} \tan u\ du + \left[ \frac{u^2}{2} \right]_0^\frac{\pi}{4} \]

\[ = \left[ u^2 \frac{\tan^2 u}{2} \right]_0^\frac{\pi}{4} - \left[ u \tan u \right]_0^\frac{\pi}{4} + \left[ \log \left| \sec u \right| \right]_0^\frac{\pi}{4} + \left[ \frac{u^2}{2} \right]_0^\frac{\pi}{4} \]

\[ = \frac{\pi^2}{16} \times \frac{1}{2} - \frac{\pi}{4} + \log\sqrt{2} + \frac{\pi^2}{32}\]

\[ = \frac{\pi^2}{16} - \frac{\pi}{4} + \log\sqrt{2}\]

\[ = \frac{\pi^2}{16} - \frac{\pi}{4} + \frac{1}{2}\log 2\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 24 | पृष्ठ १२१

संबंधित प्रश्न

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_2^3 e^{- x} dx\]


Evaluate the following:

Γ(4)


Evaluate the following:

`Γ (9/2)`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×