हिंदी

∫ π 0 E 2 X ⋅ Sin ( π 4 + X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

उत्तर

\[Let\ I = \int_0^\pi e^{2x} \sin \left( \frac{\pi}{4} + x \right) d x \]
\[\text{Integrating by parts, we get}\]
\[I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{2} \int_0^\pi e^{2x} \cos \left( \frac{\pi}{4} + x \right) dx\]
\[\text{Now, integrating the second term by parts, we get}\]
\[ \Rightarrow I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{2}\left\{ \left[ \frac{1}{2} e^{2x} \cos \left( \frac{\pi}{4} + x \right) \right]_0^\pi + \frac{1}{2} \int_0^\pi e^{2x} \sin \left( \frac{\pi}{4} + x \right) d x \right\}\]
\[ \Rightarrow I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{4} \left[ e^{2x} \cos \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{4}I\]
\[ \Rightarrow \frac{5}{4}I = \frac{1}{2}\left[ e^{2\pi} \sin\left( \pi + \frac{\pi}{4} \right) - \sin\left( \frac{\pi}{4} \right) \right] - \frac{1}{4}\left[ e^{2\pi} \cos\left( \pi + \frac{\pi}{4} \right) - \cos\left( \frac{\pi}{4} \right) \right]\]
\[ \Rightarrow \frac{5}{4}I = \frac{1}{2}\left[ - e^{2\pi} \times \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right] - \frac{1}{4}\left[ - e^{2\pi} \times \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right]\]
\[ \Rightarrow \frac{5}{4}I = - \frac{1}{2\sqrt{2}} e^{2\pi} - \frac{1}{2\sqrt{2}} + \frac{1}{4\sqrt{2}} e^{2\pi} + \frac{1}{4\sqrt{2}}\]
\[ \Rightarrow I = - \frac{1}{5\sqrt{2}}\left( e^{2\pi} + 1 \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 53 | पृष्ठ १७

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Choose the correct alternative:

Γ(1) is


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×