Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\pi e^{2x} \sin \left( \frac{\pi}{4} + x \right) d x \]
\[\text{Integrating by parts, we get}\]
\[I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{2} \int_0^\pi e^{2x} \cos \left( \frac{\pi}{4} + x \right) dx\]
\[\text{Now, integrating the second term by parts, we get}\]
\[ \Rightarrow I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{2}\left\{ \left[ \frac{1}{2} e^{2x} \cos \left( \frac{\pi}{4} + x \right) \right]_0^\pi + \frac{1}{2} \int_0^\pi e^{2x} \sin \left( \frac{\pi}{4} + x \right) d x \right\}\]
\[ \Rightarrow I = \frac{1}{2} \left[ e^{2x} \sin \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{4} \left[ e^{2x} \cos \left( \frac{\pi}{4} + x \right) \right]_0^\pi - \frac{1}{4}I\]
\[ \Rightarrow \frac{5}{4}I = \frac{1}{2}\left[ e^{2\pi} \sin\left( \pi + \frac{\pi}{4} \right) - \sin\left( \frac{\pi}{4} \right) \right] - \frac{1}{4}\left[ e^{2\pi} \cos\left( \pi + \frac{\pi}{4} \right) - \cos\left( \frac{\pi}{4} \right) \right]\]
\[ \Rightarrow \frac{5}{4}I = \frac{1}{2}\left[ - e^{2\pi} \times \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right] - \frac{1}{4}\left[ - e^{2\pi} \times \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right]\]
\[ \Rightarrow \frac{5}{4}I = - \frac{1}{2\sqrt{2}} e^{2\pi} - \frac{1}{2\sqrt{2}} + \frac{1}{4\sqrt{2}} e^{2\pi} + \frac{1}{4\sqrt{2}}\]
\[ \Rightarrow I = - \frac{1}{5\sqrt{2}}\left( e^{2\pi} + 1 \right)\]
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If f(x) is a continuous function defined on [−a, a], then prove that
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Choose the correct alternative:
Γ(1) is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`