Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ x = a \tan\ t . Then, dx = a\ \sec^2 t\ dt\]
\[When\ x = 0, t = 0\ and\ x = a, t = \frac{\pi}{4}\]
\[ \therefore I = \int_0^a \frac{x}{\sqrt{a^2 + x^2}} d\ x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{4} \frac{a \tan t}{\sqrt{a^2 + a^2 \tan^2 t}}a \sec^2 t\ d t\]
\[ = \int_0^\frac{\pi}{4} \frac{\left( a \tan t \right) a \sec^2 t}{a \sec t} dt\]
\[ = \int_0^\frac{\pi}{4} a \tan t \sec t\ dt\]
\[ = a \left[ \sec t \right]_0^\frac{\pi}{4} \]
\[ = a\left( \sqrt{2} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
Γ(n) is
Find `int sqrt(10 - 4x + 4x^2) "d"x`