Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ x = a \tan\ t . Then, dx = a\ \sec^2 t\ dt\]
\[When\ x = 0, t = 0\ and\ x = a, t = \frac{\pi}{4}\]
\[ \therefore I = \int_0^a \frac{x}{\sqrt{a^2 + x^2}} d\ x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{4} \frac{a \tan t}{\sqrt{a^2 + a^2 \tan^2 t}}a \sec^2 t\ d t\]
\[ = \int_0^\frac{\pi}{4} \frac{\left( a \tan t \right) a \sec^2 t}{a \sec t} dt\]
\[ = \int_0^\frac{\pi}{4} a \tan t \sec t\ dt\]
\[ = a \left[ \sec t \right]_0^\frac{\pi}{4} \]
\[ = a\left( \sqrt{2} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Evaluate the following integral:
Evaluate :
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]