Advertisements
Advertisements
प्रश्न
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
उत्तर
\[Let, I = \int_0^4 x\sqrt{4 - x} d x\]
\[ = \int_0^4 \left( 4 - x \right)\sqrt{4 - 4 + x} d x\]
\[ = \int_0^4 \left( 4 - x \right)\sqrt{x} d x\]
\[ = \int_0^4 4\sqrt{x} - x^\frac{3}{2} dx\]
\[ = \left[ 8\frac{x^\frac{3}{2}}{3} \right]_0^4 - \left[ \frac{2 x^\frac{5}{2}}{5} \right]_0^4 \]
\[ = \frac{64}{3} - \frac{64}{5}\]
\[ = \frac{128}{15}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate :
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`