Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
उत्तर
I = `int (x^2 + 2)/(x + 1) "d"x`
= `int (x^2 - 1 + 3)/(x + 1) "d"x`
= `int ((x - 1)(x + 1) + 3)/(x + 1) "d"x`
= `int (x - 1 + 3/(x + 1)) "d"x`
= `int (x - 1) "d"x + 3int 1/(x + 1) "d"x`
= `x^2/2 - x + 3 log |(x + 1)| + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
Solve each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.