Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let }I = \int_0^\frac{\pi}{2} \sqrt{1 + \sin x } d x . Then, \]
\[I = \int_0^\frac{\pi}{2} \sqrt{1 + \sin x} \times \frac{\sqrt{1 - \sin x}}{\sqrt{1 - \sin x}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sqrt{1 - \sin^2 x}}{\sqrt{1 - \sin x}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\cos x}{\sqrt{1 - \sin x}} dx\]
\[Let 1 - \sin x = u\]
\[ \Rightarrow - \cos x dx = du\]
\[ \therefore I = \int\frac{- du}{\sqrt{u}}\]
\[ \Rightarrow I = \left[ - 2\sqrt{u} \right]\]
\[ \Rightarrow I = \left[ - 2\sqrt{1 - \sin x} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 0 + 2\]
\[ \Rightarrow I = 2\]
APPEARS IN
संबंधित प्रश्न
Write the coefficient a, b, c of which the value of the integral
`int_0^(2a)f(x)dx`
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^4 x dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
Γ(n) is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
`int x^3/(x + 1)` is equal to ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`