Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\pi \cos^5 x d x\]
\[ = \int_0^\pi \cos x \left( \cos^2 x \right)^2 dx\]
\[ = \int_0^\pi \cos x \left( 1 - \sin^2 x \right)^2 dx\]
\[ Let \sin x = t, then\ \cos x\ dx = dt\]
\[When\, x \to 0 ; t \to 0\ and\ x \to \pi ; t \to 0\]
\[ \text{Therefore}, \]
\[I = \int_0^0 \left( 1 - t^2 \right)^2 dt\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
`int x^3/(x + 1)` is equal to ______.
Find: `int logx/(1 + log x)^2 dx`