Advertisements
Advertisements
प्रश्न
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
उत्तर
Let I = `int sqrt((1 + x)/(1 - x)) "d"x`
= `int 1/sqrt(1 - x^2) "d"x + int (x"d"x)/sqrt(1 - x^2)`
= `sin^-1x + 1`
When I1 = `(x"d"x)/sqrt(1 - x^2)`.
Put 1 – x2 = t2
⇒ –2x dx = 2t dt.
Therefore I1 = – dt = – t + C
= `- sqrt(1 - x^2) + "C"`
Hence I = `sin^-1x - sqrt(1 - x^2) + "C"`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.