मराठी

1 ∫ 0 X Tan − 1 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

उत्तर

\[Let\ I = \int_0^1 x \tan^{- 1} x\ d\ x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ \frac{x^2 \tan^{- 1} x}{2} \right]_0^1 - \frac{1}{2} \int_0^1 \frac{x^2}{1 + x^2} dx\]
\[ \Rightarrow I = \left[ \frac{x^2 \tan^{- 1} x}{2} \right]_0^1 - \frac{1}{2} \int_0^1 \left( \frac{1 + x^2}{1 + x^2} - \frac{1}{1 + x^2} \right) dx\]
\[ \Rightarrow I = \left[ \frac{x^2 \tan^{- 1} x}{2} \right]_0^1 - \frac{1}{2} \left[ x - \tan^{- 1} x \right]_0^1 \]
\[ \Rightarrow I = \frac{\pi}{8} - 0 - \frac{1}{2}\left( 1 - \frac{\pi}{4} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi}{4} - \frac{1}{2}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.2 | Q 32 | पृष्ठ ३९

संबंधित प्रश्‍न

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 


\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_2^3 e^{- x} dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×