Advertisements
Advertisements
प्रश्न
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
उत्तर
\[\int_\frac{- 1}{2}^\frac{1}{2} \cos x \log\left( \frac{1 + x}{1 - x} \right) d x\]
\[\text{Let }f(x) = \cos x \log\left( \frac{1 + x}{1 - x} \right)\]
\[\text{Consider }f(- x) = \cos\left( - x \right) \log\left( \frac{1 - x}{1 + x} \right)\]
\[ = \cos x\left\{ - \log\left( \frac{1 + x}{1 - x} \right) \right\} = - \cos x \log\left( \frac{1 + x}{1 - x} \right) = - f\left( x \right)\]
Thus f(x) is an odd function
Therefore,
\[ \int_\frac{- 1}{2}^\frac{1}{2} \cos x \log\left( \frac{1 + x}{1 - x} \right) d x = 0\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If f is an integrable function, show that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: