Advertisements
Advertisements
Question
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
Solution
\[\int_\frac{- 1}{2}^\frac{1}{2} \cos x \log\left( \frac{1 + x}{1 - x} \right) d x\]
\[\text{Let }f(x) = \cos x \log\left( \frac{1 + x}{1 - x} \right)\]
\[\text{Consider }f(- x) = \cos\left( - x \right) \log\left( \frac{1 - x}{1 + x} \right)\]
\[ = \cos x\left\{ - \log\left( \frac{1 + x}{1 - x} \right) \right\} = - \cos x \log\left( \frac{1 + x}{1 - x} \right) = - f\left( x \right)\]
Thus f(x) is an odd function
Therefore,
\[ \int_\frac{- 1}{2}^\frac{1}{2} \cos x \log\left( \frac{1 + x}{1 - x} \right) d x = 0\]
APPEARS IN
RELATED QUESTIONS
If f(2a − x) = −f(x), prove that
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
`int_0^(2a)f(x)dx`
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
`Γ(3/2)`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`