English

Π ∫ 0 X Tan X Sec X C O S E C X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]
Sum

Solution

\[Let I = \int_0^\pi \frac{x \tan x}{secx \cos ecx} d x .............(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \tan\left( \pi - x \right)}{sec\left( \pi - x \right) \cos ec\left( \pi - x \right)} dx .............\left[\text{Using }\int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int_0^\pi \frac{- \left( \pi - x \right)\tan x}{- sec\ x \ cosec\ x}dx\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)\tan x}{secx \cos ecx}dx ................(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^\pi \frac{x \tan x}{secx \cos ecx} + \frac{\left( \pi - x \right)\tan x}{secx \ cosec\ x} d x\]
\[ = \int_0^\pi \left( x + \pi - x \right)\frac{\tan x}{secx \ cosec\ x}dx\]
\[ = \int_0^\pi \frac{\pi\ tanx}{secx \ cosec\ x}dx\]
\[ = \int_0^\pi \pi\ sin^2 x dx\]
\[ = \pi \int_0^\pi \left( 1 - \cos^2 x \right)dx\]
\[ = \pi \left[ x \right]_0^\pi - \frac{\pi}{2} \int_0^\pi \left( 1 + \cos2x \right) dx\]
\[ = \frac{\pi}{2} \left[ x \right]_0^\pi - \frac{\pi}{2} \left[ \frac{\sin2x}{2} \right]_0^\pi \]
\[ = \frac{\pi^2}{2}\]
\[Hence\, I = \frac{\pi^2}{4}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 11 | Page 95

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


\[\int\limits_2^3 e^{- x} dx\]


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


`int x^3/(x + 1)` is equal to ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×