Advertisements
Advertisements
Question
Solution
\[Let I = \int_0^\pi \frac{x \tan x}{secx \cos ecx} d x .............(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \tan\left( \pi - x \right)}{sec\left( \pi - x \right) \cos ec\left( \pi - x \right)} dx .............\left[\text{Using }\int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ = \int_0^\pi \frac{- \left( \pi - x \right)\tan x}{- sec\ x \ cosec\ x}dx\]
\[ = \int_0^\pi \frac{\left( \pi - x \right)\tan x}{secx \cos ecx}dx ................(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^\pi \frac{x \tan x}{secx \cos ecx} + \frac{\left( \pi - x \right)\tan x}{secx \ cosec\ x} d x\]
\[ = \int_0^\pi \left( x + \pi - x \right)\frac{\tan x}{secx \ cosec\ x}dx\]
\[ = \int_0^\pi \frac{\pi\ tanx}{secx \ cosec\ x}dx\]
\[ = \int_0^\pi \pi\ sin^2 x dx\]
\[ = \pi \int_0^\pi \left( 1 - \cos^2 x \right)dx\]
\[ = \pi \left[ x \right]_0^\pi - \frac{\pi}{2} \int_0^\pi \left( 1 + \cos2x \right) dx\]
\[ = \frac{\pi}{2} \left[ x \right]_0^\pi - \frac{\pi}{2} \left[ \frac{\sin2x}{2} \right]_0^\pi \]
\[ = \frac{\pi^2}{2}\]
\[Hence\, I = \frac{\pi^2}{4}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate :
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
`int x^3/(x + 1)` is equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.