Advertisements
Advertisements
Question
Solution
\[Let\, I = \int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]
\[Consider\, x = a \cos 2y\ Then\ y = \frac{1}{2} \cos^{- 1} \left( \frac{x}{a} \right)\]
\[ \Rightarrow dx = - 2a \sin 2y\ dy\]
\[When\, x \to - a ; y \to \frac{\pi}{2}\ and\ x\ \to a ; y \to 0\]
\[\text{Now, integral becomes}, \]
\[ I = \int_\frac{\pi}{2}^0 - 2a \sin 2y\sqrt{\frac{a - a \cos 2y}{a + a \cos 2y}} dy\]
\[ = \int_0^\frac{\pi}{2} 2a \sin 2y \tan\ y\ dy\]
\[ = 2a \int_0^\frac{\pi}{2} 2\sin y \cos y \frac{\sin y}{\cos y}\ dy\]
\[ = 2a \int_0^\frac{\pi}{2} 2 \sin^2\ y\ dy\]
\[ = 2a \int_0^\frac{\pi}{2} \left( 1 - \cos 2y \right) dy\]
\[ = 2a \left[ y - \frac{\sin 2y}{2} \right]_0^\frac{\pi}{2} \]
\[ = 2a \left[ \frac{\pi}{2} - \frac{\sin 2y}{2} \right]_0^\frac{\pi}{2} \]
\[ = \pi a\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
Γ(1) is
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.