English

A ∫ − a √ a − X a + X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

Solution

\[Let\, I = \int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[Consider\, x = a \cos 2y\ Then\ y = \frac{1}{2} \cos^{- 1} \left( \frac{x}{a} \right)\]

\[ \Rightarrow dx = - 2a \sin 2y\ dy\]

\[When\, x \to - a ; y \to \frac{\pi}{2}\ and\ x\ \to a ; y \to 0\]

\[\text{Now, integral becomes}, \]

\[ I = \int_\frac{\pi}{2}^0 - 2a \sin 2y\sqrt{\frac{a - a \cos 2y}{a + a \cos 2y}} dy\]

\[ = \int_0^\frac{\pi}{2} 2a \sin 2y \tan\ y\ dy\]

\[ = 2a \int_0^\frac{\pi}{2} 2\sin y \cos y \frac{\sin y}{\cos y}\ dy\]

\[ = 2a \int_0^\frac{\pi}{2} 2 \sin^2\ y\ dy\]

\[ = 2a \int_0^\frac{\pi}{2} \left( 1 - \cos 2y \right) dy\]

\[ = 2a \left[ y - \frac{\sin 2y}{2} \right]_0^\frac{\pi}{2} \]

\[ = 2a \left[ \frac{\pi}{2} - \frac{\sin 2y}{2} \right]_0^\frac{\pi}{2} \]

\[ = \pi a\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 55 | Page 40

RELATED QUESTIONS

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Choose the correct alternative:

Γ(1) is


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×