Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int\limits_0^2 x\left[ x \right] dx\]
\[\text{We know that}, \]
\[x\left[ x \right] = \begin{cases}x \times 0&,& 0 < x < 1\\x \times 1&,& 1 < x < 2\end{cases}\]
\[i . e . , \]
\[x\left[ x \right] = \begin{cases}0&,& 0 < x < 1\\x&,& 1 < x < 2\end{cases}\]
\[ \therefore I = \int\limits_0^2 x\left[ x \right] dx\]
\[ = \int\limits_0^1 x\left[ x \right] dx + \int\limits_1^2 x\left[ x \right] dx\]
\[ = \int\limits_0^1 \left( 0 \right) dx + \int\limits_1^2 \left( x \right) dx\]
\[ = 0 + \left[ \frac{x^2}{2} \right]_1^2 \]
\[ = \frac{2^2}{2} - \frac{1^2}{2}\]
\[ = \frac{4}{2} - \frac{1}{2}\]
\[ = \frac{3}{2}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
Γ(1) is
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: