Advertisements
Advertisements
Question
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
Options
x
x2
`1/"x"`
None of the above options
Solution
`1/"x"`
Explanation:
Given, `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`
Taking L.H.S. = `int "e"^"x" (("x" - 1)/"x"^2) "dx"`
= `int "e"^"x" (1/"x" - 1/"x"^2) "dx"`
= `int "e"^"x". 1/"x" "dx" - int "e"^"x". 1/"x"^2 dx"`
Integrating the first integral by parts taking `1/"x"` as the first function,
= `1/"x". "e"^"x" + int 1/"x"^2. "e"^"x" "dx" - int "e"^"x". 1/"x"^2 "dx" + "c"`
= `1/"x". "e"^"x" + "c"`
On comparing with the R.H.S., we get
f(x) = `1/"x"`
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`