English

Given exxxdxexfxc∫ex(x-1x2)dx=exf(x)+c. Then f(x) satisfying the equation is: - Mathematics

Advertisements
Advertisements

Question

Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:

Options

  • x

  • x2

  • `1/"x"`

  • None of the above options

MCQ

Solution

`1/"x"`

Explanation:

Given, `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`

Taking L.H.S. = `int "e"^"x" (("x" - 1)/"x"^2) "dx"`

= `int "e"^"x" (1/"x" - 1/"x"^2) "dx"`

= `int "e"^"x". 1/"x" "dx" - int "e"^"x". 1/"x"^2 dx"`

Integrating the first integral by parts taking `1/"x"` as the first function,

= `1/"x". "e"^"x" + int 1/"x"^2. "e"^"x" "dx" - int "e"^"x". 1/"x"^2 "dx" + "c"`

= `1/"x". "e"^"x" + "c"`

On comparing with the R.H.S., we get

f(x) = `1/"x"`

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
2021-2022 (April) Set 1

RELATED QUESTIONS

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×