Advertisements
Advertisements
Question
Options
loge 3
- \[\log_e \sqrt{3}\]
- \[\frac{1}{2}\log\left( - 1 \right)\]
log (−1)
Solution
\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{\sin2x} d x\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \ cosec2x\ dx\]
\[ = \frac{1}{2} \int_\frac{\pi}{6}^\frac{\pi}{3} 2\ cosec2x\ dx\]
\[ = \frac{- 1}{2} \left[ \log\left( \ cosec\ 2x\ + \cot2x \right) \right]_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ = \frac{- 1}{2}\left[ - 2\log\sqrt{3} \right]\]
\[ = \log\sqrt{3}\]
APPEARS IN
RELATED QUESTIONS
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If f(x) is a continuous function defined on [−a, a], then prove that
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`Γ(3/2)`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
`int x^3/(x + 1)` is equal to ______.