English

∫ π 2 0 Cos 2 X 1 + 3 Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]
Sum

Solution

\[Let\ I = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3\left( 1 - \cos^2 x \right)}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{4 - 3 \cos^2 x}dx\]
\[ = - \frac{1}{3} \int_0^\frac{\pi}{2} \frac{4 - 3 \cos^2 x - 4}{4 - 3 \cos^2 x}dx\]

\[= - \frac{1}{3} \int_0^\frac{\pi}{2} dx + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{1}{4 - 3 \cos^2 x}dx\]
\[ = \left.- \frac{1}{3} x\right|_0^\frac{\pi}{2} + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4 \sec^2 x - 3}dx ..............\left( \text{Dividing numerator and denominator by} \cos^2 x \right)\]
\[ = - \frac{1}{3}\left( \frac{\pi}{2} - 0 \right) + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4\left( 1 + \tan^2 x \right) - 3}dx\]
\[ = - \frac{\pi}{6} + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4 \tan^2 x + 1}dx\]
Put tanx = z
\[\therefore \sec^2 xdx = dz\]
When
\[x \to 0, z \to 0\]
When
\[x \to \frac{\pi}{2}, z \to \infty\]
\[\therefore I = - \frac{\pi}{6} + \frac{4}{3} \int_0^\infty \frac{dz}{4 z^2 + 1}\]
\[ = - \frac{\pi}{6} + \frac{4}{3} \int_0^\infty \frac{dz}{\left( 2z \right)^2 + 1}\]
\[ = \left.- \frac{\pi}{6} + \frac{4}{3} \times \frac{\tan^{- 1} 2z}{2}\right|_0^\infty \]
\[ = - \frac{\pi}{6} + \frac{2}{3}\left( \tan^{- 1} \infty - \tan^{- 1} 0 \right)\]
\[ = - \frac{\pi}{6} + \frac{2}{3}\left( \frac{\pi}{2} - 0 \right)\]
\[ = - \frac{\pi}{6} + \frac{\pi}{3}\]
\[ = \frac{\pi}{6}\]
shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 40 | Page 39

RELATED QUESTIONS

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int_0^2 2x\left[ x \right]dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Choose the correct alternative:

Γ(1) is


Choose the correct alternative:

`Γ(3/2)`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×