Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3\left( 1 - \cos^2 x \right)}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{4 - 3 \cos^2 x}dx\]
\[ = - \frac{1}{3} \int_0^\frac{\pi}{2} \frac{4 - 3 \cos^2 x - 4}{4 - 3 \cos^2 x}dx\]
\[ = \left.- \frac{1}{3} x\right|_0^\frac{\pi}{2} + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4 \sec^2 x - 3}dx ..............\left( \text{Dividing numerator and denominator by} \cos^2 x \right)\]
\[ = - \frac{1}{3}\left( \frac{\pi}{2} - 0 \right) + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4\left( 1 + \tan^2 x \right) - 3}dx\]
\[ = - \frac{\pi}{6} + \frac{4}{3} \int_0^\frac{\pi}{2} \frac{\sec^2 x}{4 \tan^2 x + 1}dx\]
\[ = - \frac{\pi}{6} + \frac{4}{3} \int_0^\infty \frac{dz}{\left( 2z \right)^2 + 1}\]
\[ = \left.- \frac{\pi}{6} + \frac{4}{3} \times \frac{\tan^{- 1} 2z}{2}\right|_0^\infty \]
\[ = - \frac{\pi}{6} + \frac{2}{3}\left( \tan^{- 1} \infty - \tan^{- 1} 0 \right)\]
\[ = - \frac{\pi}{6} + \frac{2}{3}\left( \frac{\pi}{2} - 0 \right)\]
\[ = - \frac{\pi}{6} + \frac{\pi}{3}\]
\[ = \frac{\pi}{6}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate the following integral:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
Γ(1) is
Choose the correct alternative:
`Γ(3/2)`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.