English

1 ∫ 0 Tan − 1 X 1 + X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

Solution

\[Let\ I = \int_0^1 \frac{\tan^{- 1} x}{1 + x^2} d\ x . Then, \]
\[Let\ \tan^{- 1} x = t . Then, \frac{1}{1 + x^2} dx = dt\]
\[When\ x = 0, t = 0\ and\ x = 1, t = \frac{\pi}{4}\]
\[ \therefore I = \int_0^\frac{\pi}{4} t dt\]
\[ \Rightarrow I = \left[ \frac{t^2}{2} \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow I = \frac{\pi^2}{32}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 30 | Page 39

RELATED QUESTIONS

\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int_0^2 2x\left[ x \right]dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


Evaluate : 

\[\int\limits_2^3 3^x dx .\]

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


\[\int\limits_1^e \log x\ dx =\]

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals


\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


`int_0^(2a)f(x)dx`


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×