Advertisements
Advertisements
Question
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Options
0
2
1
4
MCQ
Solution
2
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]
\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]
\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]
\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]
\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.