Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int\limits_0^\sqrt{2} \left[ x^2 \right] dx\]
\[ = \int\limits_0^1 \left[ x^2 \right] dx + \int\limits_1^\sqrt{2} \left[ x^2 \right] dx\]
\[ = \int\limits_0^1 \left( 0 \right)dx + \int\limits_1^\sqrt{2} \left( 1 \right)dx .................\left( \because \left[ x^2 \right] = \begin{cases}0&& 0 < x < 1\\1&& 1 < x < \sqrt{2}\end{cases} \right)\]
\[ = 0 + \left[ x \right]_1^\sqrt{2} \]
\[ = \sqrt{2} - 1\]
APPEARS IN
RELATED QUESTIONS
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
Γ(1) is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`