Advertisements
Advertisements
Question
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
Solution
\[\text{We have}, \]
\[I = \int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]
\[\text{We know that}, \]
\[\left\{ x \right\} = x\text{, when }0 < x < \frac{\pi}{4} ..............\left(\text{As }\pi = 3 . 14 \Rightarrow \frac{\pi}{4} = 0 . 785 < 1 \right)\]
\[ \therefore I = \int\limits_0^{\pi/4} \sin x\ dx\]
\[ = \left[ - \cos x \right]_0^\frac{\pi}{4} \]
\[ = - \left( \cos \frac{\pi}{4} - \cos 0 \right)\]
\[ = \cos 0 - \cos \frac{\pi}{4}\]
\[ = 1 - \frac{1}{\sqrt{2}}\]
\[ = \frac{\sqrt{2} - 1}{\sqrt{2}}\]
APPEARS IN
RELATED QUESTIONS
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate each of the following integral:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int x^3/(x + 1)` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Find: `int logx/(1 + log x)^2 dx`