Advertisements
Advertisements
Question
Solution
\[Let\ I \int_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) d\ x\ . Then, \]
\[I = \int_1^2 e^{2x} \frac{1}{x} - \int_1^2 e^{2x} \frac{1}{2 x^2} dx\]
\[\text{Integrating first term by parts}\]
\[ \Rightarrow I = \left\{ \left[ \frac{e^{2x}}{2x} \right]_1^2 - \int_1^2 - e^{2x} \frac{1}{2 x^2} \right\} - \int_1^2 e^{2x} \frac{1}{2 x^2} dx\]
\[ \Rightarrow I = \left[ \frac{e^{2x}}{2x} \right]_1^2 \]
\[ \Rightarrow I = \frac{e^4}{4} - \frac{e^2}{2}\]
\[ \Rightarrow I = \frac{e^4 - 2 e^2}{4}\]
APPEARS IN
RELATED QUESTIONS
Prove that:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.