English

Evaluate the Following Definite Integral: ∫ 1 0 1 √ ( X − 1 ) ( 2 − X ) D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]
Sum

Solution

Let I =
\[\int_1^2 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]
Put
\[x = \cos^2 \theta + 2 \sin^2 \theta\]
`thereforedx=2costheta(-sintheta)dtheta+4sinthetacostheta d theta=2sinthetacostheta d theta`
Also,
\[x = \cos^2 \theta + 2 \sin^2 \theta\]
\[ \Rightarrow x = 1 + \sin^2 \theta\]
\[ \Rightarrow \sin\theta = \sqrt{x - 1}\]
When `xrarr1, sinthetararr0" or "thetararr0`
When \[x \to 2, \sin\theta \to 1\text{ or }\theta \to \frac{\pi}{2}\]
`therefore I = `\[\int_1^2 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]
\[\Rightarrow I = \int_0^\frac{\pi}{2} \frac{2\sin\theta\cos\theta d\theta}{\sqrt{\left( \cos^2 \theta + 2 \sin^2 \theta - 1 \right)\left( 2 - \cos^2 \theta - 2 \sin^2 \theta \right)}}\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{2\sin\theta\cos\theta d\theta}{\sqrt{\sin^2 \theta \cos^2 \theta}} ...................\left( \sin^2 \theta + \cos^2 \theta = 1 \right)\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{2\sin\ theta\cos\theta  d\theta}{\sin\theta\cos\theta}\]
\[ \Rightarrow I = 2 \int_0^\frac{\pi}{2} d\theta\]
\[ \Rightarrow I = 2\theta |_0^\frac{\pi}{2}\]
\[\Rightarrow I = 2\left( \frac{\pi}{2} - 0 \right) = \pi\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 59 | Page 17

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate: 

\[\int\sqrt{\frac{1 + \cos 2x}{2}}dx\]

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×