Advertisements
Advertisements
Question
Evaluate each of the following integral:
Solution
\[\text{Let I }=\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx...................\left(1\right)\]
Then,
\[I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}}{\sqrt{\sin\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)} + \sqrt{\cos\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}}dx ...................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin\left( \frac{\pi}{2} - x \right)}}{\sqrt{\sin\left( \frac{\pi}{2} - x \right)} + \sqrt{\cos\left( \frac{\pi}{2} - x \right)}}dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}}dx . . . . . \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]
\[ \Rightarrow 2I = \int_\frac{\pi}{6}^\frac{\pi}{3} dx\]
\[ \Rightarrow 2I = \left.x\right|_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ \Rightarrow 2I = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}\]
\[ \Rightarrow I = \frac{\pi}{12}\]
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
`int_0^1 x^2e^x dx` = ______.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.