Advertisements
Advertisements
Question
Evaluate each of the following integral:
Solution
\[\text{Let I} =\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx................\left(1\right)\]
Then,
\[I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 \left[ \frac{\pi}{4} + \left( - \frac{\pi}{4} \right) - x \right]}{1 + e^\left[ \frac{\pi}{4} + \left( - \frac{\pi}{4} \right) - x \right]}dx .......................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 \left( - x \right)}{1 + e^{- x}}dx\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + \frac{1}{e^x}}dx\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{e^x \tan^2 x}{e^x + 1}dx . . . . . \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \frac{\tan^2 x}{1 + e^x} + \frac{e^x \tan^2 x}{1 + e^x} \right)dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\left( 1 + e^x \right) \tan^2 x}{1 + e^x}dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \tan^2 xdx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \sec^2 x - 1 \right)dx\]
\[ \Rightarrow 2I = \tan x_{- \frac{\pi}{4}}^\frac{\pi}{4} - x_{- \frac{\pi}{4}}^\frac{\pi}{4} \]
\[ \Rightarrow 2I = \left[ \tan\frac{\pi}{4} - \tan\left( - \frac{\pi}{4} \right) \right] - \left[ \frac{\pi}{4} - \left( - \frac{\pi}{4} \right) \right]\]
\[ \Rightarrow 2I = \left( 1 + 1 \right) - \left( \frac{2\pi}{4} \right)\]
\[ \Rightarrow 2I = 2 - \frac{\pi}{2}\]
\[ \Rightarrow I = 1 - \frac{\pi}{4}\]
Notes
This answer does not matches with the given answer in the book.
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate :
Evaluate:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.