English

Evaluate Each of the Following Integral: ∫ π 4 − π 4 Tan 2 X 1 + E X D X - Mathematics

Advertisements
Advertisements

Question

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 

Sum

Solution

\[\text{Let I} =\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx................\left(1\right)\]

Then,

\[I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 \left[ \frac{\pi}{4} + \left( - \frac{\pi}{4} \right) - x \right]}{1 + e^\left[ \frac{\pi}{4} + \left( - \frac{\pi}{4} \right) - x \right]}dx .......................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 \left( - x \right)}{1 + e^{- x}}dx\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + \frac{1}{e^x}}dx\]
\[ = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{e^x \tan^2 x}{e^x + 1}dx . . . . . \left( 2 \right)\]

Adding (1) and (2), we get

\[2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \frac{\tan^2 x}{1 + e^x} + \frac{e^x \tan^2 x}{1 + e^x} \right)dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\left( 1 + e^x \right) \tan^2 x}{1 + e^x}dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \tan^2 xdx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \sec^2 x - 1 \right)dx\]

\[\Rightarrow 2I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \sec^2 xdx - \int_{- \frac{\pi}{4}}^\frac{\pi}{4} dx\]
\[ \Rightarrow 2I = \tan x_{- \frac{\pi}{4}}^\frac{\pi}{4} - x_{- \frac{\pi}{4}}^\frac{\pi}{4} \]
\[ \Rightarrow 2I = \left[ \tan\frac{\pi}{4} - \tan\left( - \frac{\pi}{4} \right) \right] - \left[ \frac{\pi}{4} - \left( - \frac{\pi}{4} \right) \right]\]
\[ \Rightarrow 2I = \left( 1 + 1 \right) - \left( \frac{2\pi}{4} \right)\]
\[ \Rightarrow 2I = 2 - \frac{\pi}{2}\]
\[ \Rightarrow I = 1 - \frac{\pi}{4}\]
shaalaa.com

Notes

This answer does not matches with the given answer in the book.

  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.4 [Page 61]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.4 | Q 5 | Page 61

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×