English

Find : ∫ E 2 X Sin ( 3 X + 1 ) D X . - Mathematics

Advertisements
Advertisements

Question

Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .

Solution

Let I =  \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] Use integration by parts,

\[\int u v dx = u\int v dx - \int\left[ \frac{du}{dx}\int v dx \right]dx\]

Here,

\[u = \sin \left( 3x + 1 \right) and v = e^{2x}\]

Therefore,

\[I = \sin \left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d\left( \sin\left( 3x + 1 \right) \right)}{dx}\int e^{2x} dx \right]dx\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\int e^{2x} \cos\left( 3x + 1 \right) dx\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\left[ \cos\left( 3x + 1 \right)\int e^{2x} dx - \int\left\{ \frac{d\left( \cos\left( 3x + 1 \right) \right)}{dx}\int e^{2x} dx \right\} \right] \left[ \text {  Integration by parts again } \right]\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\left[ \frac{\cos\left( 3x + 1 \right) e^{2x}}{2} - \int\left\{ \frac{- 3}{2} e^{2x} \sin\left( 3x + 1 \right)dx \right\} \right]\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}\int e^{2x} \sin\left( 3x + 1 \right)dx\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}I\]

\[I + \frac{9}{4}I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} \]

\[I = \frac{4}{13}\left[ \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) Foreign Set 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

 

Evaluate `int_(-1)^2|x^3-x|dx`

 

Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×