Advertisements
Advertisements
Question
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Solution
Let I = \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] Use integration by parts,
\[\int u v dx = u\int v dx - \int\left[ \frac{du}{dx}\int v dx \right]dx\]
Here,
\[u = \sin \left( 3x + 1 \right) and v = e^{2x}\]
Therefore,
\[I = \sin \left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d\left( \sin\left( 3x + 1 \right) \right)}{dx}\int e^{2x} dx \right]dx\]
\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\int e^{2x} \cos\left( 3x + 1 \right) dx\]
\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\left[ \cos\left( 3x + 1 \right)\int e^{2x} dx - \int\left\{ \frac{d\left( \cos\left( 3x + 1 \right) \right)}{dx}\int e^{2x} dx \right\} \right] \left[ \text { Integration by parts again } \right]\]
\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\left[ \frac{\cos\left( 3x + 1 \right) e^{2x}}{2} - \int\left\{ \frac{- 3}{2} e^{2x} \sin\left( 3x + 1 \right)dx \right\} \right]\]
\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}\int e^{2x} \sin\left( 3x + 1 \right)dx\]
\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}I\]
\[I + \frac{9}{4}I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} \]
\[I = \frac{4}{13}\left[ \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} \right] + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.