मराठी

Find : ∫ E 2 X Sin ( 3 X + 1 ) D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .

उत्तर

Let I =  \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] Use integration by parts,

\[\int u v dx = u\int v dx - \int\left[ \frac{du}{dx}\int v dx \right]dx\]

Here,

\[u = \sin \left( 3x + 1 \right) and v = e^{2x}\]

Therefore,

\[I = \sin \left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d\left( \sin\left( 3x + 1 \right) \right)}{dx}\int e^{2x} dx \right]dx\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\int e^{2x} \cos\left( 3x + 1 \right) dx\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\left[ \cos\left( 3x + 1 \right)\int e^{2x} dx - \int\left\{ \frac{d\left( \cos\left( 3x + 1 \right) \right)}{dx}\int e^{2x} dx \right\} \right] \left[ \text {  Integration by parts again } \right]\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{2}\left[ \frac{\cos\left( 3x + 1 \right) e^{2x}}{2} - \int\left\{ \frac{- 3}{2} e^{2x} \sin\left( 3x + 1 \right)dx \right\} \right]\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}\int e^{2x} \sin\left( 3x + 1 \right)dx\]

\[I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}I\]

\[I + \frac{9}{4}I = \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} \]

\[I = \frac{4}{13}\left[ \frac{\sin \left( 3x + 1 \right) e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Foreign Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^1 x(1 - x)^5 "dx" =` ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×