Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
उत्तर
Let I = `int "dt"/sqrt(3"t" - 2"t"^2)`
= `int "dt"/sqrt(-2("t"^2 - 3/2 "t"))`
= `1/sqrt(2) int "dt"/sqrt(-("t"^2 - 3/2 "t" + 9/16 - 9/16))` ....[Making perfect square]
= `1/sqrt(2) int "dt"/sqrt(-[("t" - 3/4)^2 - 9/16])`
= `1/sqrt(2) int "dt"/sqrt(9/16 - ("t" - 3/4)^2)`
= `1/sqrt(2) int "dt"/sqrt((3/4)^2 - ("t" - 3/4)^2)`
= `1/sqrt(2) * sin^-1 ("t" - 3/4)/(3/4) + "C"`
= `1/sqrt(2) sin^-1 (4"t" - 3)/3 + "C"`
Hence, I = `1/sqrt(2) sin^-1 ((4"t" - 3)/3) + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
find `∫_2^4 x/(x^2 + 1)dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
Find: `int (dx)/sqrt(3 - 2x - x^2)`
Evaluate: `int x/(x^2 + 1)"d"x`