Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{2x}{\left( 2x + 1 \right)^2}dx\]
\[ = \int\left( \frac{2x + 1 - 1}{\left( 2x + 1 \right)^2} \right)dx\]
\[ = \int\left[ \frac{2x + 1}{\left( 2x + 1 \right)^2} - \frac{1}{\left( 2x + 1 \right)^2} \right]dx\]
\[ = \int\frac{dx}{2x + 1} - \int \left( 2x + 1 \right)^{- 2} dx\]
\[ = \frac{\log\left( 2x + 1 \right)}{2} - \left[ \frac{\left( 2x + 1 \right)^{- 2 + 1}}{2\left( - 2 + 1 \right)} \right] + C\]
\[ = \frac{\log \left( 2x + 1 \right)}{2} + \frac{\left( 2x + 1 \right)^{- 1}}{2} + C\]
\[ = \frac{\log \left( 2x + 1 \right)}{2} + \frac{1}{2\left( 2x + 1 \right)} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate: `int1/(xlogxlog(logx))dx`
find `∫_2^4 x/(x^2 + 1)dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate:
`int (1 + cosx)/(sin^2x)dx`