हिंदी

∫ 2 X ( 2 X + 1 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]
योग

उत्तर

\[\int\frac{2x}{\left( 2x + 1 \right)^2}dx\]
\[ = \int\left( \frac{2x + 1 - 1}{\left( 2x + 1 \right)^2} \right)dx\]
\[ = \int\left[ \frac{2x + 1}{\left( 2x + 1 \right)^2} - \frac{1}{\left( 2x + 1 \right)^2} \right]dx\]
\[ = \int\frac{dx}{2x + 1} - \int \left( 2x + 1 \right)^{- 2} dx\]
\[ = \frac{\log\left( 2x + 1 \right)}{2} - \left[ \frac{\left( 2x + 1 \right)^{- 2 + 1}}{2\left( - 2 + 1 \right)} \right] + C\]
\[ = \frac{\log \left( 2x + 1 \right)}{2} + \frac{\left( 2x + 1 \right)^{- 1}}{2} + C\]
\[ = \frac{\log \left( 2x + 1 \right)}{2} + \frac{1}{2\left( 2x + 1 \right)} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.03 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.03 | Q 7 | पृष्ठ २३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate : `int1/(3+5cosx)dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


Find: `int (dx)/sqrt(3 - 2x - x^2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×