Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{2x}{\left( 2x + 1 \right)^2}dx\]
\[ = \int\left( \frac{2x + 1 - 1}{\left( 2x + 1 \right)^2} \right)dx\]
\[ = \int\left[ \frac{2x + 1}{\left( 2x + 1 \right)^2} - \frac{1}{\left( 2x + 1 \right)^2} \right]dx\]
\[ = \int\frac{dx}{2x + 1} - \int \left( 2x + 1 \right)^{- 2} dx\]
\[ = \frac{\log\left( 2x + 1 \right)}{2} - \left[ \frac{\left( 2x + 1 \right)^{- 2 + 1}}{2\left( - 2 + 1 \right)} \right] + C\]
\[ = \frac{\log \left( 2x + 1 \right)}{2} + \frac{\left( 2x + 1 \right)^{- 1}}{2} + C\]
\[ = \frac{\log \left( 2x + 1 \right)}{2} + \frac{1}{2\left( 2x + 1 \right)} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int1/(3+5cosx)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate :
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
Find: `int (dx)/sqrt(3 - 2x - x^2)`