हिंदी

Evaluate : ∫1/(3+5cosx)dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : 13+5cosxdx

उत्तर

Let I=13+5cosxdx put tan(x2)=t

then dx=21+t2dtandcosx=1-t21+t2

I=2dt1+t23+5(1-t21+t2)

=2dt1+t23(1+t2)+5(1-t2)1+t2

=2dt3+3t2+5-5t2

=2dt8-2t2

=dt22-t2 

 

=12(2)log|2+t2-t|+c

=14log|2+tan(x2)2-tan(x2)|+c

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2012-2013 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate:  1+logxx(2+logx)(3+logx)dx


Evaluate :0π211+cosxdx

 


Evaluate : 04(|x|+|x-2|+|x-4|)dx


Evaluate :

0π4x sin x1+cos2 x dx


If 0a14+x2dx=π8 , find the value of a.


Evaluate :

ee2dxxlogx


Evaluate: sinxxdx

 


Evaluate the integral by using substitution.

01xx2+1dx


Evaluate the integral by using substitution.

-11dxx2+2x +5


11+cosx dx = _____

A) tan(x2)+c

B) 2tan(x2)+c

C) -cot(x2)+c

D) -2 cot(x2) + c


Evaluate of the following integral:

32log3xdx

Evaluate : 

e6logexe5logexe4logexe3logexdx

2x(2x+1)2dx

Evaluate the following integral:

03|3x1|dx

 


Evaluate the following integral:

22|x+1|dx

 


Evaluate the following integral:

12|x3|dx

Evaluate the following integral:

0π/2|cos2x|dx

Evaluate the following integral:

14{|x1|+|x2|+|x4|}dx

 


Evaluate each of the following integral:

π6π3sinxsinx+cosxdx

 


Evaluate each of the following integral:

π4π4tan2x1+exdx

 


Evaluate each of the following integral:

π4π4x113x9+5x7x5+1cos2xdx

Evaluate the following integral:

π6π311+cot32xdx

 


Evaluate the following integral:

0π2tan7xtan7x+cot7xdx

Evaluate the following integral:

223x3+2|x|+1x2+|x|+1dx

Evaluate the following integral:

3π2π2{sin2(3π+x)+(π+x)3}dx

Evaluate : 21|x3x|dx .


Evaluate:  ex(2+sin2x)cos2xdx


Evaluate: -ππ(1-x2)sinxcos2x dx.


Evaluate:  -12|x|xdx.


01x(1-x)5dx= ______.


0π4sec4x dx = ______.


Evaluate the following:

e6logx-e5logxe4logx-e3logxdx


01x2exdx = ______.


Evaluate: 0π2sin2xtan-1(sinx)dx.


Evaluate: xx2+1dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.