English

Evaluate : ∫1/(3+5cosx)dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int1/(3+5cosx)dx`

Solution

Let ` I=int 1/(3+5cosx)dx " put " tan (x/2)=t`

then `dx=2/(1+t^2)dt and cos x=(1-t^2)/(1+t^2)`

`I=int(2dt/(1+t^2))/(3+5((1-t^2)/(1+t^2)))`

`=2int (dt/(1+t^2))/((3(1+t^2)+5(1-t^2))/(1+t^2))`

`=2int dt/(3+3t^2+5-5t^2)`

`=2int dt/(8-2t^2)`

`=int dt/(2^2-t^2)  `

 

`=1/(2(2)) log|(2+t)/(2-t)|+c`

`=1/4 log|(2+tan(x/2))/(2-tan(x/2))|+c`

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (March)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate :`int_0^(pi/2)1/(1+cosx)dx`

 


Evaluate: `int1/(xlogxlog(logx))dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


Evaluate of the following integral: 

\[\int x^\frac{5}{4} dx\]

Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Find: `int (dx)/sqrt(3 - 2x - x^2)`


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×