English

Evaluate the Following Integral: 2 π ∫ 0 | Sin X | D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 

Sum

Solution

\[\int_0^{2\pi} \left| \sin x \right| d x\]
\[\text{We know that}, \left| \sin x \right| = \begin{cases} - \sin x &,& \pi \leq x \leq 2\pi\\\sin x&,& 0 < x \leq \pi\end{cases}\]
\[ \therefore I = \int_0^{2\pi} \left| \sin x \right| dx\]
\[ \Rightarrow I = \int_0^\pi \sin x dx + \int_\pi^{2\pi} - \sin x dx\]
\[ \Rightarrow I = - \left[ \cos x \right]_0^\pi + \left[ \cos x \right]_\pi^{2\pi} \]
\[ \Rightarrow I = 1 + 1 + 1 - \left( - 1 \right)\]
\[ \Rightarrow I = 4\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.3 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.3 | Q 12 | Page 56

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


 

find `∫_2^4 x/(x^2 + 1)dx`

 

Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate: 

\[\int\frac{2 \cos^2 x - \cos 2x}{\cos^2 x}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is


Evaluate: `int x/(x^2 + 1)"d"x`


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×