Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\int_0^{2\pi} \left| \sin x \right| d x\]
\[\text{We know that}, \left| \sin x \right| = \begin{cases} - \sin x &,& \pi \leq x \leq 2\pi\\\sin x&,& 0 < x \leq \pi\end{cases}\]
\[ \therefore I = \int_0^{2\pi} \left| \sin x \right| dx\]
\[ \Rightarrow I = \int_0^\pi \sin x dx + \int_\pi^{2\pi} - \sin x dx\]
\[ \Rightarrow I = - \left[ \cos x \right]_0^\pi + \left[ \cos x \right]_\pi^{2\pi} \]
\[ \Rightarrow I = 1 + 1 + 1 - \left( - 1 \right)\]
\[ \Rightarrow I = 4\]
APPEARS IN
RELATED QUESTIONS
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
Evaluate :
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
Evaluate: `int x/(x^2 + 1)"d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`