Advertisements
Advertisements
Question
Evaluate each of the following integral:
Solution
\[\text{Let I }= \int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\] ....................(1)
Then,
\[I = \int_0^{2\pi} \frac{e^\ sin\left( 2\pi - x \right)}{e^\ sin\left( 2\pi - x \right) + e^{- \ sin \left( 2\pi - x \right)}}dx .....................\left( \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right)\]
\[ = \int_0^{2\pi} \frac{e^{- \ sin x}}{e^{- \ sin x} + e^\ sin x}dx ..........................\left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_0^{2\pi} \frac{e^\ sin x + e^{- \ sin x}}{e^\ sin x + e^{- \ sin x}}dx\]
\[ \Rightarrow 2I = \int_0^{2\pi} dx\]
\[ \Rightarrow 2I = x_0^{2\pi} \]
\[ \Rightarrow 2I = 2\pi - 0\]
\[ \Rightarrow I = \pi\]
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate :
Evaluate the following integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
Find: `int (dx)/sqrt(3 - 2x - x^2)`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate:
`int (1 + cosx)/(sin^2x)dx`