Advertisements
Advertisements
Question
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Solution
I = `int_ e^x ( (2)/(cos^2 x) + (2sin x cos x)/(cos^2 x))dx`
= `int_ e^x ( 2 sec^2 x + 2 tan x)dx`
= `2int_ e^x (sec^2 x + tan x)dx`
= `2[int_ e^x sec^2 x dx + int_ e^x tan x dx]`
= `2[ e^x int_ sec^2 x dx - int_ {d/dx e^x int_ sec^2 x dx } dx + int_ e^x tan x dx ] + c `
= `2[ e^x tan x - int_ e^x tan x dx + int_ e^x tan x dx ] + c`
= `2 e^x tan x + c`
APPEARS IN
RELATED QUESTIONS
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
`int_0^(pi4) sec^4x "d"x` = ______.
`int_0^1 x^2e^x dx` = ______.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int x/(x^2 + 1)"d"x`