Advertisements
Advertisements
प्रश्न
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
उत्तर
I = `int_ e^x ( (2)/(cos^2 x) + (2sin x cos x)/(cos^2 x))dx`
= `int_ e^x ( 2 sec^2 x + 2 tan x)dx`
= `2int_ e^x (sec^2 x + tan x)dx`
= `2[int_ e^x sec^2 x dx + int_ e^x tan x dx]`
= `2[ e^x int_ sec^2 x dx - int_ {d/dx e^x int_ sec^2 x dx } dx + int_ e^x tan x dx ] + c `
= `2[ e^x tan x - int_ e^x tan x dx + int_ e^x tan x dx ] + c`
= `2 e^x tan x + c`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int1/(3+5cosx)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate:
Evaluate:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Find: `int (dx)/sqrt(3 - 2x - x^2)`
Evaluate: `int x/(x^2 + 1)"d"x`