Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left| \sin x \right| d x\]
\[\text{We know that}, \left| \sin x \right| = \begin{cases} - \sin x &,& - \frac{\pi}{4} \leq x \leq 0\\\sin x&,& 0 < x \leq \frac{\pi}{4}\end{cases}\]
\[ \therefore I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left| \sin x \right| d x\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^0 - \sin x dx + \int_0^\frac{\pi}{4} \sin x dx\]
\[ \Rightarrow I = \left[ \cos x \right]_\frac{- \pi}{4}^0 - \left[ \cos x \right]_0^\frac{- \pi}{4} \]
\[ \Rightarrow I = 1 - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + 1\]
\[ \Rightarrow I = 2 - \frac{2}{\sqrt{2}}\]
\[ \Rightarrow I = 2 - \sqrt{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.