Advertisements
Advertisements
प्रश्न
Evaluate:
उत्तर
\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]
`=∫ \sqrt {{2 sin_2 x }/{2}} dx` `[∴ 1 - cos 2x = 2 sin ^2 x]`
\[ = \int\text{sin x dx}\]
\[ = - \cos x + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate `∫_0^(3/2)|x cosπx|dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Find: `int (dx)/sqrt(3 - 2x - x^2)`
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`