Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let I} = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx..............(1)\]
Then,
\[I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} \left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}dx .................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} \left( \frac{\pi}{2} - x \right)}dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \tan^\frac{3}{2} x}dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\cot^\frac{3}{2} x}{\cot^\frac{3}{2} x + 1}dx ...................(2)\]
Adding (1) and (2), we get
\[2I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1 + \cot^\frac{3}{2} x}{1 + \cot^\frac{3}{2} x}dx\]
\[ \Rightarrow 2I = \int_\frac{\pi}{6}^\frac{\pi}{3} dx\]
\[ \Rightarrow 2I = \left.x\right|_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ \Rightarrow 2I = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}\]
\[ \Rightarrow I = \frac{\pi}{12}\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
`int_0^1 x(1 - x)^5 "dx" =` ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Each student in a class of 40, studies at least one of the subjects English, Mathematics and Economics. 16 study English, 22 Economics and 26 Mathematics, 5 study English and Economics, 14 Mathematics and Economics and 2 study all the three subjects. The number of students who study English and Mathematics but not Economics is
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is