Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
उत्तर
`int_0^4(|x|+|x-2|+|x-4|)dx`
`I=int_0^4f(x)dx=int_0^2f(x)dx+int_2^4f(x)dx`
`I=int_0^2(x+2-x+4-x)dx+int_2^4(x+x-2+4-x)dx`
`I=int_0^2(x+2-x+4-x)dx+int_2^4(x+x-2+4-x)dx`
`I=int_0^2(6-x)dx+int_2^4(x+2)dx=[6x-x^2/2]_0^2+[x^2/2+2x]_2^4=[12-1]+[8-2+(8-4)]=20`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate: `int1/(xlogxlog(logx))dx`
Evaluate : `int1/(3+5cosx)dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
find `∫_2^4 x/(x^2 + 1)dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int x/(x^2 + 1)"d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.