मराठी

If a and b are two vectors such that |a+b|=|a|, then prove that vector 2a+b is perpendicular to vector b - Mathematics

Advertisements
Advertisements

प्रश्न

If `veca and vecb` are two vectors such that `|veca+vecb|=|veca|,` then prove that vector `2veca+vecb` is perpendicular to vector `vecb`

 

उत्तर

Given |`veca+vecb|=|veca|`∣

`|veca+vecb|^2=|veca|^2`

`|veca|^2+2veca.vecb+|vecb|^2=|veca|^2`

`2veca.vecb+|vecb|^2=0 ................(1)`

`Now (2veca+vecb)(vecb)=2vecavecb+vecbvecb=2vecavecb+|vecb|^2=0  using(1)`

We know that, if the dot product of two vectors is zero, then either of the two vectors is zero or the vectors are perpendicular to each other.

Thus,

Given `|veca+vecb|=|veca|`

`|veca+vecb|^2=|veca|^2`

`|veca|^2+2veca.vecb+|vecb|^2=|veca|^2`

`2veca.vecb+|vecb|^2=0 ................(1)`

`Now (2veca+vecb)(vecb)=2vecavecb+vecbvecb=2vecavecb+|vecb|^2=0  using(1)`

We know that, if the dot product of two vectors is zero, then either of the two vectors is zero or the vectors are perpendicular to each other.

Thus, `2veca+vecb` is perpendicular to `vecb`

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2012-2013 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The scalar product of the vector `veca=hati+hatj+hatk` with a unit vector along the sum of vectors `vecb=2hati+4hatj−5hatk and vecc=λhati+2hatj+3hatk` is equal to one. Find the value of λ and hence, find the unit vector along `vecb +vecc`


Prove that `(veca + vecb).(veca + vecb)` = `|veca|^2 + |vecb|^2` if and only if `veca . vecb` are perpendicular, given `veca != vec0, vecb != vec0.`


Find the magnitude of each of two vectors `veca` and `vecb` having the same magnitude such that the angle between them is 60° and their scalar product is `9/2`


Find `lambda` if the scalar projection of `vec a = lambda hat i + hat j + 4 hat k` on `vec b = 2hati + 6hatj + 3hatk` is 4 units


Find \[\vec{a} \cdot \vec{b}\] when

\[\vec{a} = \hat{j} + 2 \hat{k}  \text{ and } \vec{b} = 2 \hat{i} + \hat{k}\]


For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if

\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4\hat{k} \text{ and } \vec{b} = 3 \hat{i} - 2 \hat{j} +\lambda \hat{k}\]


For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if  

\[\vec{a} = \lambda \hat{i} + 3 \hat{j} + 2 \hat{k}\text { and } \vec{b} = \hat{i} - \hat{j} + 3 \hat{k}\]


If the vectors \[3 \hat{i} - 2 \hat{j} - 4 \hat{k}\text{ and } 18 \hat{i} - 12 \hat{j} - m \hat{k}\] are parallel, find the value of m.


If \[\vec{b}\] is a unit vector such that\[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) = 8, \text{ find } \left| \vec{a} \right| .\]


If \[\vec{a} = \hat{i} - \hat{j} \text{ and } \vec{b} = - \hat{j} + \hat{k} ,\]  find the projection of \[\vec{a} \text{ on } \vec{b}\] 


Write the projection of \[\hat{i} + \hat{j} + \hat{k}\] along the vector \[\hat{j}\] 


Write a vector satisfying \[\vec{a} . \hat{i} = \vec{a} . \left( \hat{i} + \hat{j} \right) = \vec{a} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 1 .\]


If \[\vec{a} \text{ and } \vec{b}\] are unit vectors, find the angle between \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} .\]


If \[\vec{a} \text{ and } \vec{b}\] are mutually perpendicular unit vectors, write the value of \[\left| \vec{a} + \vec{b} \right| .\] 


Find the angle between the vectors \[\vec{a} = \hat{i} - \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - \hat{k} .\]


Find the projection of \[\vec{a} \text{ on } \vec{b} \text{ if } \vec{a} \cdot \vec{b} = 8 \text{ and } \vec{b} = 2 \hat{i} + 6 \hat{j} + 3 \hat{k} .\] 


If \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 3,\] find the projection of \[\vec{b} \text{ on } \vec{a}\] 


Write the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] with magnitudes \[\sqrt{3}\] and 2 respectively if \[\vec{a} \cdot \vec{b} = \sqrt{6} .\]


Find λ when the projection of \[\vec{a} = \lambda \hat{i} + \hat{j} + 4 \hat{k} \text{ on } \vec{b} = 2 \hat{i} + 6 \hat{j} + 3 \hat{k}\]  is 4 units. 


Write the projection of the vector \[7 \hat{i} + \hat{j} - 4 \hat{k}\] on the vector \[2 \hat{i} + 6 \hat{j}+ 3 \hat{k} .\] 


If \[\vec{a}\] and \[\vec{b}\] are unit vectors, then find the angle between \[\vec{a}\] and \[\vec{b}\] given that \[\left( \sqrt{3} \vec{a} - \vec{b} \right)\] is a unit vector.      


If  \[\vec{a} \text{ and } \vec{b}\] are two non-collinear unit vectors such that \[\left| \vec{a} + \vec{b} \right| = \sqrt{3},\] find \[\left( 2 \vec{a} - 5 \vec{b} \right) \cdot \left( 3 \vec{a} + \vec{b} \right) .\] 


The angle between two vectors `vec"a"` and `vec"b"` with magnitudes `sqrt(3)` and 4, respectively, and `vec"a" * vec"b" = 2sqrt(3)` is ______.


The value of `hati(hatj + hatk)hatj * (hati + hatk) + hatk - (hati + hatj)` is-


If `veca, vecb, vecc` are three non-zero unequal vectors such that `veca.vecb = veca.vecc`, then find the angle between `veca` and `vecb - vecc`.


If `veca = 2hati + hatj + 2hatk` and `vecb = 5hati - 3hatj + hatk`, find the projection of `vecb` on `veca`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×