मराठी

For What Value of λ Are the Vectors → a and → B Perpendicular to Each Other If → a = λ ^ I + 3 ^ J + 2 ^ K and → B = ^ I − ^ J + 3 ^ K - Mathematics

Advertisements
Advertisements

प्रश्न

For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if  

\[\vec{a} = \lambda \hat{i} + 3 \hat{j} + 2 \hat{k}\text { and } \vec{b} = \hat{i} - \hat{j} + 3 \hat{k}\]

बेरीज

उत्तर

\[\text{ If the vectors } \vec{a} \text{ and } \vec{b} \text{ are perpendicular to each other, then }\]
\[ \vec{a} . \vec{b} = 0\]
\[ \Rightarrow \left( \lambda \hat{i} + 3 \hat{j} + 2 \hat{k}\right) . \left( \hat{i} - 1\hat{j} + 3\hat{k} \right) = 0\]
\[ \Rightarrow \lambda - 3 + 6 = 0\]
\[ \Rightarrow \lambda + 3 = 0\]
\[ \Rightarrow \lambda = - 3\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Scalar Or Dot Product - Exercise 24.1 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 24 Scalar Or Dot Product
Exercise 24.1 | Q 2.4 | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

 

Vectors `veca,vecb and vecc ` are such that `veca+vecb+vecc=0 and |veca| =3,|vecb|=5 and |vecc|=7 ` Find the angle between `veca and vecb`

 

If `veca and vecb` are two vectors such that `|veca+vecb|=|veca|,` then prove that vector `2veca+vecb` is perpendicular to vector `vecb`

 


The scalar product of the vector `veca=hati+hatj+hatk` with a unit vector along the sum of vectors `vecb=2hati+4hatj−5hatk and vecc=λhati+2hatj+3hatk` is equal to one. Find the value of λ and hence, find the unit vector along `vecb +vecc`


Show that each of the given three vectors is a unit vector:

`1/7 (2hati + 3hatj + 6hatj), 1/7(3hati - 6hatj + 2hatk), 1/7(6hati + 2hatj - 3hatk)`

Also, show that they are mutually perpendicular to each other.


Find the magnitude of each of two vectors `veca` and `vecb` having the same magnitude such that the angle between them is 60° and their scalar product is `9/2`


Find \[\vec{a} \cdot \vec{b}\] when

 \[\vec{a} =\hat{i} - 2\hat{j} + \hat{k}\text{ and } \vec{b} = 4 \hat{i} - 4\hat{j} + 7 \hat{k}\]


Find \[\vec{a} \cdot \vec{b}\] when 

\[\vec{a} = \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + 3 \hat{j} - 2 \hat{k}\]


If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \right| = 4, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 6\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]


If the vectors \[3 \hat{i} - 2 \hat{j} - 4 \hat{k}\text{ and } 18 \hat{i} - 12 \hat{j} - m \hat{k}\] are parallel, find the value of m.


If \[\vec{a} \text{ and } \vec{b}\] are vectors of equal magnitude, write the value of \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) .\] 


For any two vectors \[\vec{a} \text{ and } \vec{b}\] write when \[\left| \vec{a} + \vec{b} \right| = \left| \vec{a} \right| + \left| \vec{b} \right|\] holds. 


If \[\vec{a} . \vec{a} = 0 \text{ and } \vec{a} . \vec{b} = 0,\] what can you conclude about the vector \[\vec{b}\] 


If \[\hat{a} , \hat{b}\] are unit vectors such that \[\hat{a} + \hat{b}\]  is a unit vector, write the value of \[\left| \hat{a} - \hat{b} \right| .\] 


If \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and } \vec{a} . \vec{b} = 2, \text{ find } \left| \vec{a} - \vec{b} \right| .\]


For any two non-zero vectors, write the value of \[\frac{\left| \vec{a} + \vec{b} \right|^2 + \left| \vec{a} - \vec{b} \right|^2}{\left| \vec{a} \right|^2 + \left| \vec{b} \right|^2} .\] 


Write the value of \[\left( \vec{a} . \hat{i} \right) \hat{i} + \left( \vec{a} . \hat{j} \right) \hat{j} + \left( \vec{a} . \hat{k} \right) \hat{k} ,\]  where \[\vec{a}\] is any vector. 


Find the value of θ ∈(0, π/2) for which vectors \[\vec{a} = \left( \sin \theta \right) \hat{i} + \left( \cos \theta \right) \hat{j} \text{ and } \vec{b} = \hat{i} - \sqrt{3} \hat{j} + 2 \hat{k}\] are perpendicular.


If \[\vec{a} \text{ and } \vec{b}\] are mutually perpendicular unit vectors, write the value of \[\left| \vec{a} + \vec{b} \right| .\] 


Write the value of p for which \[\vec{a} = 3 \hat{i} + 2 \hat{j} + 9 \hat{k} \text{ and } \vec{b} = \hat{i} + p \hat{j} + 3 \hat{k}\]    are parallel vectors . 


If \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 3,\] find the projection of \[\vec{b} \text{ on } \vec{a}\] 


Find λ when the projection of \[\vec{a} = \lambda \hat{i} + \hat{j} + 4 \hat{k} \text{ on } \vec{b} = 2 \hat{i} + 6 \hat{j} + 3 \hat{k}\]  is 4 units. 


If the vectors \[\vec{a}\] and \[\vec{b}\]  are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\] 


If \[\vec{a}\] and \[\vec{b}\] are two unit vectors such that \[\vec{a} + \vec{b}\] is also a unit vector, then find the angle between \[\vec{a}\] and \[\vec{b}\] 


If the vectors \[\vec{a}\]  and \[\vec{b}\] are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\] 


Prove that, for any three vectors \[\vec{a} , \vec{b} , \vec{c}\] \[\left[ \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} + \vec{a} \right] = 2 \left[ \vec{a} , \vec{b} , \vec{c} \right]\].


Show that the vectors \[\vec{a,} \vec{b,} \vec{c}\] are coplanar if and only if \[\vec{a} + \vec{b}\], \[\vec{b} + \vec{c}\] and \[\vec{c} + \vec{a}\] are coplanar.


The vectors `vec"a" = 3hat"i" - 2hat"j" + 2hat"k"` and `vec"b" = -hat"i" - 2hat"k"` are the adjacent sides of a parallelogram. The acute angle between its diagonals is ______.


The value of `hati(hatj + hatk)hatj * (hati + hatk) + hatk - (hati + hatj)` is-


If `veca, vecb, vecc` are three non-zero unequal vectors such that `veca.vecb = veca.vecc`, then find the angle between `veca` and `vecb - vecc`.


Three vectors `veca, vecb` and `vecc` satisfy the condition `veca + vecb + vecc = vec0`. Evaluate the quantity μ = `veca.vecb + vecb.vecc + vecc.veca`, if `|veca|` = 3, `|vecb|` = 4 and `|vecc|` = 2.


If the two vectors `3hati + αhatj + hatk` and `2hati - hatj + 8hatk` are perpendicular to each other, then find the value of α.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×