मराठी

Write the Value of ( → a . ^ I ) ^ I + ( → a . ^ J ) ^ J + ( → a . ^ K ) ^ K , Where → a is Any Vector. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of \[\left( \vec{a} . \hat{i} \right) \hat{i} + \left( \vec{a} . \hat{j} \right) \hat{j} + \left( \vec{a} . \hat{k} \right) \hat{k} ,\]  where \[\vec{a}\] is any vector. 

उत्तर

\[\text{ Let } \vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k} \]
\[\text{ Now },\]
\[\left( \vec{a} . \vec{i} \right) \vec{i} + \left( \vec{a} . \vec{j} \right) \vec{j} + \left( \vec{a} . \vec{k} \right) \vec{k} \]
\[ = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k} \]
\[ = \vec{a}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Scalar Or Dot Product - very short answer [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 24 Scalar Or Dot Product
very short answer | Q 19 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `veca ` and `vecb` are two unit vectors such that `veca+vecb` is also a  unit vector, then find the angle between `veca` and `vecb`


 

Vectors `veca,vecb and vecc ` are such that `veca+vecb+vecc=0 and |veca| =3,|vecb|=5 and |vecc|=7 ` Find the angle between `veca and vecb`

 

If `veca and vecb` are two vectors such that `|veca+vecb|=|veca|,` then prove that vector `2veca+vecb` is perpendicular to vector `vecb`

 


If  `vec a, vec b, vec c`  are unit vectors such that `veca+vecb+vecc=0`, then write the value of  `vec a.vecb+vecb.vecc+vecc.vec a`.


The scalar product of the vector `hati + hatj + hatk` with a unit vector along the sum of vectors `2hati + 4hatj - 5hatk` and  `lambdahati + 2hatj +  3hatk` is equal to one. Find the value of `lambda`.


Find `lambda` if the scalar projection of `vec a = lambda hat i + hat j + 4 hat k` on `vec b = 2hati + 6hatj + 3hatk` is 4 units


Find \[\vec{a} \cdot \vec{b}\] when

 \[\vec{a} =\hat{i} - 2\hat{j} + \hat{k}\text{ and } \vec{b} = 4 \hat{i} - 4\hat{j} + 7 \hat{k}\]


Find \[\vec{a} \cdot \vec{b}\] when

\[\vec{a} = \hat{j} + 2 \hat{k}  \text{ and } \vec{b} = 2 \hat{i} + \hat{k}\]


For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if

\[\vec{a} = 2 \hat{i} + 3 \hat{j} + 4\hat{k} \text{ and } \vec{b} = 3 \hat{i} - 2 \hat{j} +\lambda \hat{k}\]


For what value of λ are the vectors \[\vec{a} \text{ and } \vec{b}\] perpendicular to each other if  

\[\vec{a} = \lambda \hat{i} + 3 \hat{j} + 2 \hat{k}\text { and } \vec{b} = \hat{i} - \hat{j} + 3 \hat{k}\]


If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left| \vec{a} \right| = 4, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 6\] find the angle between \[\vec{a} \text{ and } \vec{b} .\]


If the vectors \[3 \hat{i} - 2 \hat{j} - 4 \hat{k}\text{ and } 18 \hat{i} - 12 \hat{j} - m \hat{k}\] are parallel, find the value of m.


If \[\vec{a} \text{ and } \vec{b}\] are vectors of equal magnitude, write the value of \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) .\] 


If \[\vec{a} \text{ and } \vec{b}\] are two vectors such that \[\left( \vec{a} + \vec{b} \right) . \left( \vec{a} - \vec{b} \right) = 0,\] find the relation between the magnitudes of \[\vec{a} \text{ and } \vec{b}\]  


Write the projections of \[\vec{r} = 3 \hat{i} - 4 \hat{j} + 12 \hat{k}\] on the coordinate axes. 


Find the value of θ ∈(0, π/2) for which vectors \[\vec{a} = \left( \sin \theta \right) \hat{i} + \left( \cos \theta \right) \hat{j} \text{ and } \vec{b} = \hat{i} - \sqrt{3} \hat{j} + 2 \hat{k}\] are perpendicular.


Find the angle between the vectors \[\vec{a} = \hat{i} - \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} + \hat{j} - \hat{k} .\]


For what value of λ are the vectors \[\vec{a} = 2 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] perpendicular to each other?


Write the value of p for which \[\vec{a} = 3 \hat{i} + 2 \hat{j} + 9 \hat{k} \text{ and } \vec{b} = \hat{i} + p \hat{j} + 3 \hat{k}\]    are parallel vectors . 


Write the projection of the vector \[\hat{i} + 3 \hat{j} + 7 \hat{k}\] on the vector \[2 \hat{i} - 3 \hat{j} + 6 \hat{k}\] 


For what value of λ are the vectors \[\vec{a} = 2 \text{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] perpendicular to each other?


Write the value of λ so that the vectors \[\vec{a} = 2 \hat{i} + \lambda \hat{j} + \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k}\] are perpendicular to each other. 


If the vectors \[\vec{a}\] and \[\vec{b}\]  are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\] 


If the vectors \[\vec{a}\]  and \[\vec{b}\] are such that \[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = \frac{2}{3}\] and \[\vec{a} \times \vec{b}\] is a unit vector, then write the angle between \[\vec{a}\] and \[\vec{b}\] 


If \[\vec{a}\] and \[\vec{b}\] are unit vectors, then find the angle between \[\vec{a}\] and \[\vec{b}\] given that \[\left( \sqrt{3} \vec{a} - \vec{b} \right)\] is a unit vector.      


If  \[\vec{a} \text{ and } \vec{b}\] are two non-collinear unit vectors such that \[\left| \vec{a} + \vec{b} \right| = \sqrt{3},\] find \[\left( 2 \vec{a} - 5 \vec{b} \right) \cdot \left( 3 \vec{a} + \vec{b} \right) .\] 


The vectors `vec"a" = 3hat"i" - 2hat"j" + 2hat"k"` and `vec"b" = -hat"i" - 2hat"k"` are the adjacent sides of a parallelogram. The acute angle between its diagonals is ______.


If `hata` and `hatb` are unit vectors, then prove that `|hata + hatb| = 2 cos  theta/2`, where θ is the angle between them.


The value of `hati(hatj + hatk)hatj * (hati + hatk) + hatk - (hati + hatj)` is-


If `veca, vecb, vecc` are three non-zero unequal vectors such that `veca.vecb = veca.vecc`, then find the angle between `veca` and `vecb - vecc`.


Three vectors `veca, vecb` and `vecc` satisfy the condition `veca + vecb + vecc = vec0`. Evaluate the quantity μ = `veca.vecb + vecb.vecc + vecc.veca`, if `|veca|` = 3, `|vecb|` = 4 and `|vecc|` = 2.


If `veca.hati = veca.(hati + hatj) = veca.(hati + hatj + hatk)` = 1, then `veca` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×