मराठी

If → a . → a = 0 and → a . → B = 0 , What Can You Conclude About the Vector → B - Mathematics

Advertisements
Advertisements

प्रश्न

If a.a=0 and a.b=0, what can you conclude about the vector b 

बेरीज

उत्तर

 Given that a.a=0

|a|2=0

|a|=0...(1)

 Also, given that 

a.b=0

|a||b|cosθ=0...........( where θ is the angle between a and b)

0|b|cosθ=0............[ From (1)]

0=0

 So, it means that for any vector b, the given equation a.b=0 is satisfied .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 24: Scalar Or Dot Product - very short answer [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 24 Scalar Or Dot Product
very short answer | Q 11 | पृष्ठ ४७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

 

Vectors a,bandc  are such that a+b+c=0 and |a| =3,|b|=5and|c|=7 Find the angle between aandb

 

If a andb are two vectors such that |a+b|=|a|, then prove that vector 2a+b is perpendicular to vector b

 


The scalar product of the vector a=i^+j^+k^ with a unit vector along the sum of vectors b=2i^+4j^5k^ andc=λi^+2j^+3k^ is equal to one. Find the value of λ and hence, find the unit vector along b +c


Show that each of the given three vectors is a unit vector:

17(2i^+3j^+6j^),17(3i^-6j^+2k^),17(6i^+2j^-3k^)

Also, show that they are mutually perpendicular to each other.


The scalar product of the vector i^ +j^ +k^ with a unit vector along the sum of vectors 2i^+4j^-5k^ and  λi^ +2j^+ 3k^ is equal to one. Find the value of λ.


Prove that (a+b).(a+b) = |a|2+|b|2 if and only if a.b are perpendicular, given a0,b0.


Find the magnitude of each of two vectors a and b having the same magnitude such that the angle between them is 60° and their scalar product is 92


Find ab when 

a=j^k^ and b=2i^+3j^2k^


For what value of λ are the vectors a and b perpendicular to each other if

a=2i^+3j^+4k^ and b=3i^2j^+λk^


What is the angle between vectors a and b with magnitudes 2 and 3 respectively? Given a.b=3.


Find the cosine of the angle between the vectors 4i^3j^+3k^ and 2i^j^k^. 


If a and b are vectors of equal magnitude, write the value of (a+b).(ab). 


For any two vectors a and b write when |a+b|=|a|+|b| holds. 


For any two vectors a and b write when |a+b|=|ab| holds.


If a and b are two vectors of the same magnitude inclined at an angle of 60° such that a.b=8, write the value of their magnitude. 


If a^,b^ are unit vectors such that a^+b^  is a unit vector, write the value of |a^b^|. 


If |a|=2,|b|=5 and a.b=2, find |ab|.


Write the value of (a.i^)i^+(a.j^)j^+(a.k^)k^,  where a is any vector. 


Find the value of θ ∈(0, π/2) for which vectors a=(sinθ)i^+(cosθ)j^ and b=i^3j^+2k^ are perpendicular.


Write a vector satisfying a.i^=a.(i^+j^)=a.(i^+j^+k^)=1.


If a,b and c are mutually perpendicular unit vectors, write the value of |a+b+c|. 


Find the projection of a on b if ab=8 and b=2i^+6j^+3k^. 


Write the angle between two vectors a and b with magnitudes 3 and 2 respectively if ab=6.


Write the projection of b+c on a when a=2i^2j^+k^,b=i^+2j^2k^ and c=2i^j^+4k^. 


If a and b are perpendicular vectors, |a+b|=13 and |a|=5 find the value of |b|


If a and b are two unit vectors such that a+b is also a unit vector, then find the angle between a and b 


If a and b are unit vectors, then find the angle between a and b given that (3ab) is a unit vector.      


Prove that, for any three vectors a,b,c [a+b,b+c,c+a]=2[a,b,c].


Show that the vectors a,b,c are coplanar if and only if a+b, b+c and c+a are coplanar.


Let a,b,c be three vectors of magnitudes 3, 4 and 5 respectively. If each one is petpendicular to the sum of the other two vectors, then |a+b+c| =


If a,b,c are three non-zero unequal vectors such that a.b=a.c, then find the angle between a and b-c.


If a.i^=a.(i^+j^)=a.(i^+j^+k^) = 1, then a is ______.


If the two vectors 3i^+αj^+k^ and 2i^-j^+8k^ are perpendicular to each other, then find the value of α.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.