मराठी

The value of the integral ∫134(x-x3)13x4 dx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.

पर्याय

  • 6

  • 0

  • 3

  • 4

MCQ
रिकाम्या जागा भरा

उत्तर

The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is 6.

Explanation:

Put `x = cos theta` 

`dx = cos theta  d theta`

`therefore int (x - x^3)^(1/3)/x^4  dx`

`= int ((sin theta - sin^3 theta)^(1/3))/(sin^4 theta)  cos theta  . d theta`

`= int (sin^(1/3) theta (1 - sin^2  theta)^(1/3))/(sin^4 theta)  cos theta . d theta`

`= int (sin^(1/3) theta cos^(2/3) theta . cos theta)/(sin^2 theta sin^2 theta)`

`= int (cos^(5/3) theta)/(sin^(5/3) theta)  cosec^2 theta  d theta`

`= int cot^(5/3)  theta cosec^2  theta  d theta`

Again, on substituting `cot theta = t`

`-cosec^2 theta  "d" theta = dt`

`int (x - x^3)^(1/3)/x^4 = - int t^(5/3)  dt = (-3)/8  t^(8/3)`

`= (-3)/8  (cot theta)^(8/5)`

` = (-3)/8 ((cos theta)/(sin theta))^(8/3)`

`= (-3)/8 ((sqrt(1 - sin^2 theta))/sin theta)^(8/3)`

`= (-3)/8 [(sqrt(1 - x^2))/x]^(8/3)    ...[because sin theta = x]`

`therefore int_(1/3)^1 (x - x^3)^(1/3)/x^4  dx = (-3)/8 [((sqrt(1 - x^2))/x)^(8/3)]_(1/3)^1`

`=(-3)/8 [0 - ((sqrt(1 - 1/9))/(1/8))^(8/3)]`

`= 3/8 [((sqrt8)/3)/(1/3)]^(8/3) = 3/8 . (8^(1/2))^(8/3)`

`= 3/8 . 8^(8/6) = 3/8 * 2^(3 xx 8/6)`

`= 3/8 xx 2^4`

`= 3/8 xx 16`

= 6

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.10 [पृष्ठ ३४०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.10 | Q 9 | पृष्ठ ३४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


 

Evaluate `int_(-1)^2|x^3-x|dx`

 

If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×