Advertisements
Advertisements
प्रश्न
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
पर्याय
6
0
3
4
उत्तर
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is 6.
Explanation:
Put `x = cos theta`
`dx = cos theta d theta`
`therefore int (x - x^3)^(1/3)/x^4 dx`
`= int ((sin theta - sin^3 theta)^(1/3))/(sin^4 theta) cos theta . d theta`
`= int (sin^(1/3) theta (1 - sin^2 theta)^(1/3))/(sin^4 theta) cos theta . d theta`
`= int (sin^(1/3) theta cos^(2/3) theta . cos theta)/(sin^2 theta sin^2 theta)`
`= int (cos^(5/3) theta)/(sin^(5/3) theta) cosec^2 theta d theta`
`= int cot^(5/3) theta cosec^2 theta d theta`
Again, on substituting `cot theta = t`
`-cosec^2 theta "d" theta = dt`
`int (x - x^3)^(1/3)/x^4 = - int t^(5/3) dt = (-3)/8 t^(8/3)`
`= (-3)/8 (cot theta)^(8/5)`
` = (-3)/8 ((cos theta)/(sin theta))^(8/3)`
`= (-3)/8 ((sqrt(1 - sin^2 theta))/sin theta)^(8/3)`
`= (-3)/8 [(sqrt(1 - x^2))/x]^(8/3) ...[because sin theta = x]`
`therefore int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx = (-3)/8 [((sqrt(1 - x^2))/x)^(8/3)]_(1/3)^1`
`=(-3)/8 [0 - ((sqrt(1 - 1/9))/(1/8))^(8/3)]`
`= 3/8 [((sqrt8)/3)/(1/3)]^(8/3) = 3/8 . (8^(1/2))^(8/3)`
`= 3/8 . 8^(8/6) = 3/8 * 2^(3 xx 8/6)`
`= 3/8 xx 2^4`
`= 3/8 xx 16`
= 6
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate `int_(-1)^2|x^3-x|dx`
If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate the following definite integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.