Advertisements
Advertisements
प्रश्न
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.
उत्तर
Given `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`
Put x6 = t
6x5 dx = dt
x5 dt = `"dt"/6` ...(i)
⇒ `int cos "t" "dt"/6` = k sin (x6) + C
⇒ `1/6` sin t + C = k sin (x6) + C
⇒ `1/6 sin (x^6) + "C" = "k" sin (x^6) + "C"`
On equating,
k = `1/6`
APPEARS IN
संबंधित प्रश्न
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
`int_0^(pi4) sec^4x "d"x` = ______.
`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.